Thapar Institute of Engineering & Technology, Patiala

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Code: UEC 301; Course Name: Analog Electronic Circuits B.E (ECE/ENC) (IV-Sem), "Tutorial Sheet No. - 6"

- Q1. With $g_m = 50$ mA/V, $r_{b'e} = 1$ K, $C_e = 1$ pF and $C_c = 0.2$ pF, determine the values of f_β and f_T .
- Q2. The following low frequency parameters are known for a given transistor at room temperature (300 K) at $I_c = 10$ mA and $V_{CE} = 8$ volts: $h_{ie} = 500 \Omega$, $h_{oe} = 2 \times 10^{-4} \mu$ S, $h_{fe} = 100$ and $h_{re} = 10^{-4}$. At the same operating point, $f_T = 50$ MHz and $C_{ob} (= C_c) = 3$ pF. Calculate the values of hybrid π parameters.
- Q3. The following results were obtained on transistor measurements made at $I_c = 8$ mA, $V_{CE} = 10$ volts and at room temperature (300 K): $h_{fe} = 100$, $h_{ie} = 800 \Omega$, short circuit current gain $A_{IS} = 14$ at 8 MHz, $C_c = 4$ pF. Calculate $r_{b'e}$, $r_{bb'}$, f_{β} , f_T and C_e .
- Q4. A germanium pnp transistor operating in the active region has base width of

 2.5×10^{-4} cm. At room temperature (300 K) and for dc emitter current of 4 mA find (a) the emitter junction diffusion capacitance C_{De} and (b) frequency f_T . Given that the diffusion constant D_B for holes in n-type base region is 50 cm²/second.

- Q5. When a step input of amplitude V is applied to a low pass RC circuit. What will be the ouput voltage? Draw it. Also discuss the rise time in terms of f_H (upper 3 dB frequency).
- Q6. When a step input of amplitude V is applied to high pass RC circuit. What will be the ouput voltage? Draw it. Also discuss the tilt or sag in terms of f_L (lower 3 dB frequency).